Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Qiang Wang,* Wen-Tao Yu, Xian-Qin Hou, Dong Xu and Yan-Ling Geng

State Key Laboratory of Crystalline Materials, Institute of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail:
xqwang@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.017 \AA$
R factor $=0.039$
$w R$ factor $=0.080$
Data-to-parameter ratio $=19.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[μ-aqua-tetra- μ-thiocyanato-cadmium(II)mercury(II)] sulfolane solvate]

The title complex, $\left\{\left[\mathrm{CdHg}(\mathrm{SCN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\right\}_{n}$, comprises slightly distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedra and HgS_{4} tetrahedra where the donor atoms are derived from ambidentate thiocyanate ligands and, in the case of cadmium, also from water molecules. Pairs of Cd atoms are bridged by two water molecules, forming a parallelogram, and each water molecule is hydrogen bonded to a sulfolane molecule. Pairs of Cd and Hg atoms are connected by $-\mathrm{SCN}-$ bridges, which leads to the formation of a three-dimensional $-\mathrm{Cd}-\mathrm{NCS}-\mathrm{Hg}-$ network.

Comment

Cadmium mercury thiocyanate (CMTC) and its Lewis-base adducts are known to exist in a variety of polymeric structures. CMTC comprises distorted CdN_{4} and HgS_{4} tetrahedra (Yuan et al., 1997). Each of the three Lewis-base adducts of CMTC contain distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedra and HgS_{4} tetrahedra (Zhou et al., 2000; Guo et al., 2001; Wang et al., 2002). In the $\mathrm{Ph}_{3} \mathrm{P}$ adduct (Wang et al., 2005), the Cd and Hg atoms exist within a distorted $\mathrm{N}_{4} \mathrm{~S}$ trigonal-bipyramidal and a distorted $\mathrm{S}_{2} \mathrm{P}_{2}$ tetrahedral geometry, respectively. In the present work, the sulfolane adduct of CMTC, (I), has been characterized.

(I)

In (I), the $\mathrm{Cd}^{\mathrm{II}}$ and $\mathrm{Hg}^{\mathrm{II}}$ atoms are within a distorted $\mathrm{N}_{4} \mathrm{O}_{2}$ octahedral and S_{4} tetrahedral geometry, respectively (Fig. 1). The $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{Cd}-\mathrm{O}$ bond lengths are shorter and longer than the sum of Shannon's ionic radii (2.41 and $2.30 \AA$, respectively; Shannon, 1976). From the bond-angle data (Table 1), there are significant distortions from the ideal octahedral geometry. The $\mathrm{Hg}-\mathrm{S}$ bond lengths are a little longer than the sum of the single-bond covalent radii ($2.52 \AA$; Pauling, 1960), and the $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ angles deviate from the ideal tetrahedral angle. A parallelogram is formed by two Cd atoms and two bridging water molecules. The sulfolane mol-

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. The dashed line indicates a hydrogen bond. [Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $x-1, y, z$; (iii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$, (iv) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $1+x, y, z$; (vi) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (vii) $\frac{1}{2}+x, \frac{1}{2}-y$, $z-\frac{1}{2}$.]
ecule is not directly coordinated to a metal atom, rather it is hydrogen bonded to a coordinated water molecule; see Table 2 for parameters. The $\mathrm{C}-\mathrm{N}-\mathrm{Cd}$ and $\mathrm{C}-\mathrm{S}-\mathrm{Hg}$ angles (close to 180 and 90°, respectively) show that the $\mathrm{C}-\mathrm{N}-\mathrm{Cd}$ and $\mathrm{C}-$ $\mathrm{S}-\mathrm{Hg}$ groups are quasilinear and significantly bent, respectively. The -SCN - bridges connect the Cd and Hg atoms, forming an infinite three-dimensional network.

Experimental

To a crystalline powder of CMTC (0.632 g) was added a mixed solvent comprising water $(10 \mathrm{ml})$ and sulfolane (3 ml). The mixture was heated and stirred until CMTC dissolved at about 333 K . The colourless solution was allowed to stand at about 313 K . After several hours, transparent crystals of (I) suitable for X-ray structure analysis were obtained. Analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{CdHgN}_{4} \mathrm{O}_{3} \mathrm{~S}_{5}$: C 14.06, H 1.47 , N 8.20%; found: C 14.18 , H 1.53, N 8.15%.

Crystal data

```
[CdHg(NCS)4}(\mp@subsup{\textrm{H}}{2}{}\textrm{O})]\cdot\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{8}{}\mp@subsup{\textrm{O}}{2}{}\textrm{S
Mr}=683.4
Monoclinic, P2 / /n
a=8.7219 (7) A
b=17.3525 (19) \AA
c=12.2719 (14) \AA
\beta=92.457 (9)}\mp@subsup{}{}{\circ
V=1855.6(3) \AA \AA
```


Data collection

Bruker P4 diffractometer ω scans
Absorption correction: ψ scan
(XSCANS; Bruker,1996)
$T_{\text {min }}=0.296, T_{\text {max }}=0.449$
4929 measured reflections
3843 independent reflections

$Z=4$

$D_{x}=2.447 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=9.98 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.12 \times 0.09 \times 0.08 \mathrm{~mm}$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.5^{\circ}$
3 standard reflections
every 97 reflections intensity decay: none

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {viii }}$	0.97	1.77	$2.727(9)$	170
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3$	0.97	1.72	$2.680(8)$	170

[^1]

Figure 2
Packing diagram for (I), showing the three-dimensional network. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0311 P)^{2}\right. \\
& \quad \quad+0.2895 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.46 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-1.09 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X T L \\
& \text { Extinction coefficient: } 0.00413(15)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Hg1-S1	2.547 (2)	Cd1-O1	2.390 (5)
Hg1-S2	2.537 (2)	$\mathrm{Cd} 1-\mathrm{O} 1^{\text {i }}$	2.470 (5)
Hg1-S3	2.543 (3)	Cd1-N2	2.248 (8)
Hg1-S4	2.555 (2)	Cd1-N3	2.282 (7)
Cd1-N1	2.248 (8)	Cd1-N4	2.273 (6)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2$	112.00 (9)	N1-Cd1-N4	93.0 (3)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 3$	111.41 (10)	N2-Cd1-N3	101.7 (3)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 4$	105.94 (8)	N2-Cd1-N4	92.9 (2)
$\mathrm{S} 2-\mathrm{Hg} 1-\mathrm{S} 3$	106.22 (9)	N3-Cd1-N4	165.1 (3)
$\mathrm{S} 2-\mathrm{Hg} 1-\mathrm{S} 4$	110.56 (8)	Hg1-S1-C1	95.1 (3)
$\mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 4$	110.79 (10)	$\mathrm{Hg} 1-\mathrm{S} 2-\mathrm{C} 2$	93.9 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1^{\text {i }}$	73.28 (19)	$\mathrm{Hg} 1-\mathrm{S} 3-\mathrm{C} 3$	103.2 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	103.4 (3)	Hg1-S4-C4	97.3 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 2$	155.1 (2)	$\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	170.0 (7)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 3$	83.1 (2)	$\mathrm{Cd} 1-\mathrm{N} 2-\mathrm{C} 2{ }^{\text {ii }}$	173.9 (7)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 4$	82.4 (2)	$\mathrm{Cd} 1-\mathrm{N} 3-\mathrm{C} 3^{\text {iii }}$	156.6 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	166.8 (2)	$\mathrm{Cd} 1-\mathrm{N} 4-\mathrm{C}^{\text {iv }}$	161.7 (7)
$\mathrm{O} 1^{\text {i }}-\mathrm{Cd} 1-\mathrm{N} 2$	83.5 (2)	$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd} 1{ }^{\text {i }}$	106.72 (19)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 3$	80.2 (2)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	179.3 (9)
$\mathrm{O} 1^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 4$	99.1 (2)	$\mathrm{S} 2-\mathrm{C} 2-\mathrm{N} 2^{\text {v }}$	179.0 (8)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 2$	101.2 (3)	$\mathrm{S} 3-\mathrm{C} 3-\mathrm{N} 3^{\text {vi }}$	176.0 (8)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 3$	86.8 (3)	$\mathrm{S} 4-\mathrm{C} 4-\mathrm{N} 4{ }^{\text {vii }}$	178.0 (8)
$\mathrm{Cd1}{ }^{\text {i }}-\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}{ }^{\text {i }}$	0.0		

All H atoms of the sulfolane solvent molecule were placed in geometrically calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The two water H atoms were located in a difference Fourier map and refined independently with isotropic displacement parameters. The highest peak and deepest hole were located 0.79 and $0.42 \AA$, respectively, from atom S3.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: $S H E L X T L$; molecular graphics: $\operatorname{SHELXTL}$; software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

This work was supported by the grants (Nos. 60476020 and 50323006) of the National Natural Science Foundation of China.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (1996). XSCANS User's Manual. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Guo, S. Y., Xu, D., Yang, P., Yu, W. T., Lu, M. K., Yuan, D. R., Yang, Z. H., Zhang, G. H., Sun, S. Y., Wang, X. Q., Zhou, M. \& Jiang, M. H. (2001). Cryst. Res. Technol. 36, 609-614.
Pauling, L. (1960). In The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K., Yuan, D. R. \& Lu, G. T. (2002). Acta Cryst. C58, m341-m343.
Wang, X.-Q., Yu, W.-T., Xu, D. \& Sun, H.-Q. (2005). Acta Cryst. E61, m548m550.
Yuan, D. R., Xu, D., Liu, M. G., Fang, Q., Yu, W. T., Hou, W. B., Bing, Y. H., Sun, S. Y. \& Jiang, M. H. (1997). Appl. Phys. Lett. 70, 544-546.
Zhou, M., Yu, W. T., Xu, D., Guo, S. Y., Lu, M. K. \& Yuan, D. R. (2000). Z. Kristallogr. 215, 425-426.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry code: (viii) $-x+1,-y,-z+1$.

